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Abstract

By decomposing rational functions into partial fractions, we will establish several striking harmonic
number identities including the hardest challenges discovered recently by Driver et al. [Padé approximations
to the logarithm II: identities, recurrences and symbolic computation, Ramanujan J., 2003, to appear].
As application, we construct explicitly the generalized Hermite–Padé approximants to the logarithm and
therefore resolve completely this open problem in the general case.
© 2005 Elsevier Inc. All rights reserved.
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0. Introduction

The generalized harmonic numbers are defined to be partial sums of the Riemann–Zeta series:

H
(m)
0 = 0 and H(m)

n =
n∑

k=1

1

km
for m, n = 1,2, . . . . (0.1)

Whenm = 1, they reduce to the classical ones, shortened asHn = H
(1)
n .

If the shifted factorial is defined by

(c)0 ≡ 1 and (c)n = c(c + 1) · · · (c + n − 1) for n = 1,2, . . .
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then we can establish, by means of the standard partial-fraction decompositions, the following
algebraic identities:

n!
(x)n+1

=
n∑

k=0

(
n

k

) (−1)k

x + k
, (0.2)

(n!)2
(x)2n+1

=
n∑

k=0

(
n

k

)2{ 1

(x + k)2
+ 2

x + k
(Hk − Hn−k)

}
, (0.3)

(n!)3
(x)3n+1

=
n∑

k=0

(−1)k
(

n

k

)3{ 1

(x + k)3
+ 3

(x + k)2
(Hk − Hn−k) (0.4a)

+ 3

2(x + k)

[
3(Hk − Hn−k)

2 + (
H

(2)
k + H

(2)
n−k

)]}
. (0.4b)

Multiplying both sides of (0.4a)–(0.4b) byx and then lettingx → ∞, we recover one of the
hardest challenge identities:

n∑
k=0

(−1)k
(

n

k

)3{
3(Hk − Hn−k)

2 + (
H

(2)
k + H

(2)
n−k

)} = 0 (0.5)

conjectured by Weideman[14, Eq. (20)] and proved by Schneider [6, Eq. (16)] (cf. [7, Eq. (12)]
also) through computer algebra packageSigma.
This has best exemplified the power of partial fraction method. In general we will derive the

decompositions of higher powers of such rational functions into partial fractionswhich involve the
completeBell polynomials (or cyclic indicators of symmetric groups) on thegeneralizedharmonic
numbers. This will be accomplished in the first section. Then Section 2 will be devoted to the
partial fraction expansions of functions weighted with numerator monomials. As application, the
generalized Hermite–Padé approximants to the logarithm will be constructed explicitly in the last
section, which resolves this open problem completely.

1. Partial fraction decompositions

Based on nonnegative integer vectors, we introduce the coordinate sums, factorial product and
the associated partition as follows:

m̃ = (m1, m2, . . . , m�),

m̃! = m1! m2! · · · m�!,
|m̃| = m1 + m2 + · · · + m�,

‖m̃‖ = m1 + 2m2 + · · · + �m�.

1.1. Partial Bell polynomials and Faà di Bruno formula

For the�-partition represented by multiset{1m1, 2m2, . . . , �m�} and determined by�-tuples of
nonnegative integers̃m = (m1, m2, . . . , m�), let |m̃| = ∑�

i=1mi and‖m̃‖ = ∑�
i=1 imi stand for

the length and the weight of the partition, respectively. Then partial Bell polynomials associated
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with f-function are defined by

Bm,�(f ) =
∑

‖m̃‖=�
|m̃|=m

�!
m̃!

�∏
i=1

{f (i)(x)

i!
}mi

, m, � = 1,2, . . . , (1.1)

where as usual we denote thenth derivative of functionF(x) by

F (n)(x) = Dn
xF (x) with Dx = d

dx
.

For composite functions, their derivatives of higher order are provided by the following well-
known result:

Lemma 1 (Faà di Bruno formula[4, p. 139]). For two �-times differentiable functions
f (x) and�(x), let F be the composite function

F(x) := � � f (x) = �
[
f (x)

]
.

Then F is also�-times differentiable function with

F (�)(x) =
�∑

m=0

�(m)
[
f (x)

]
Bm,�(f ). (1.2)

1.2. Partial fraction decomposition

In order to proceed smoothly on the investigation of partial fraction expansion, we fix a rational
function

h(x) = n! × (x + k)

(x)n+1
= n!

(x)k(1+ x + k)n−k

(1.3)

and define further a function related to harmonic numbers

H�(x) =
n∑

�=0
��=k

1

(x + �)�
, (1.4a)

H�(−k) = H
(�)
n−k + (−1)�H

(�)
k . (1.4b)

Now we are ready to state our main result as the following:

Theorem 2(Partial fraction decomposition).Let � and n be two natural numbers. Then there
holds the algebraic identity:

(n!)�
(x)�n+1

=
n∑

k=0

(−1)k�
(

n

k

)� �−1∑
�=0

��(�, −k)

�! × (x + k)�−�
, (1.5)

where the�-coefficients are determined by the logarithmic derivative:

��(�, x) := D�
xh

�(x)

h�(x)
= (−1)��!

∑
‖m̃‖=�

�|m̃|

m̃!
�∏

i=1

Hmi

i (x)

imi
, (1.6a)
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��(�, −k) = �!
∑

‖m̃‖=�

�|m̃|

m̃!
�∏

i=1

{
H

(i)
k + (−1)iH

(i)
n−k

}mi

imi
. (1.6b)

Proof. By means of partial fraction decomposition, we can formally write

(n!)�
(x)�n+1

=
n∑

k=0

�−1∑
�=0

C(k, �)

(x + k)�−�
,

where the coefficientsC(k, �) are to be determined. Noting that

h�(−k) = (−1)k�
(

n

k

)�

we need only to check that for 0�� < � there holds:

C(k, �) = h�(−k) × ��(�, −k)

�! with ��(�, −k) = D�
xh

�(x)

h�(x)

∣∣∣
x=−k

. (1.7)

For� = 0, we have obviously�0(�, x) ≡ 1 and that

C(k, 0) = lim
x→−k

h�(x) = h�(−k) × �0(�, −k).

Next for� = 1, we can compute through L’Hospital’s rule that

C(k, 1)= lim
x→−k

(x + k)�−1
{ (n!)�

(x)�n+1

− C(k, 0)

(x + k)�

}

= lim
x→−k

h�(x) − C(k, 0)

x + k
= lim

x→−k
Dx h�(x)

= lim
x→−k

h�(x)
Dxh

�(x)

h�(x)
= h�(−k) × �1(�, −k).

Suppose thatC(k, �) = h�(−k) × ��(�, −k) is true for� = 0, 1, . . . , m − 1 with m < �.
Then we have to verify it also for� = m. Applying again the L’Hospital rule form-times, we can
determine the coefficient

C(k, m) = lim
x→−k

(x + k)�−m

{
(n!)�

(x)�n+1

−
m−1∑
�=0

C(k, �)

(x + k)�−�

}

= lim
x→−k

1

(x + k)m

{
h�(x) −

m−1∑
�=0

C(k, �) × (x + k)�

}

= lim
x→−k

h�(x)
Dm

x h�(x)

m! h�(x)
= h�(−k) × �m(�, −k)

m! .

Based on the induction principle, we have confirmed that the coefficients in partial fraction
decomposition are determined by (1.7).
To complete the proof of the theorem, it remains to show that these coefficients can be calculated

concretely through the RHS of Eq. (1.6a) and so (1.6b), the partial Bell polynomials.
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In Lemma1, specifying the composite function with

�(y) = e�y and f (x) = ln h(x)

we can compute without difficulty their derivatives

Dm
y �(y)

�(y)
= �m and D�

x f (x) = (−1)�(� − 1)!H�(x)

as well as the partial Bell polynomials

Bm,�(f ) = (−1)�
∑

‖m̃‖=�
|m̃|=m

�!
m̃!

�∏
i=1

Hmi

i (x)

imi

which leads us immediately to (1.6a):

��(�, x) = D�
xh

�(x)

h�(x)
= (−1)��!

∑
‖m̃‖=�

�|m̃|

m̃!
�∏

i=1

Hmi

i (x)

imi
.

This completes the proof of Theorem2. �

1.3. Harmonic number identities

In Theorem 2, multiplying both sides byx and then lettingx → ∞, we find the following
general identity on harmonic numbers.

Corollary 3 (Combinatorial identity on harmonic numbers).For two natural numbers� and n,
there holds

0 ≡
n∑

k=0

(−1)k�
(

n

k

)�
��−1(�, −k). (1.8)

When� = 3, it reduces to a conjectured formula due to Weideman[14, Eq. (20)]

n∑
k=0

(−1)k
(

n

k

)3{
3(Hk − Hn−k)

2 + (
H

(2)
k + H

(2)
n−k

)} = 0

which has been confirmed recently via symbolic calculus and computer algebra by Driver et
al. [6], who declared it as one of the hardest challenges to prove.
Noticing from (1.6b) that

��(�, k − n) = (−1)� ��(�, −k) (1.9)

we have similarly the following limiting relation:
n∑

k=0

(−1)k�
(

n

k

)� ��−2(�, −k)

(� − 2)!

= lim
x→∞ x2

{
(n!)�

(x)�n+1

−
n∑

k=0

(−1)k�
(

n

k

)� ��−1(�, −k)

(� − 1)! (x + k)

}
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= lim
x→∞ x2

{ n∑
k=0

(−1)k�
(

n

k

)� −��−1(�, −k)

(� − 1)! (x + k)

}

= lim
x→∞

n∑
k=0

(−1)k�
(

n

k

)� ��−1(�, −k)

(� − 1)!

×x2

2

{ −1

x + k
+ (−1)�(n+1)

x + n − k

}
,

where the involutionk → n − k has been performed in the last passage.
Combining with two further relations:

n∑
k=0

(−1)k�
(

n

k

)�
��−2(�, −k) = 0, �(n + 1)-odd,

lim
x→∞ x2

{ −1

x + k
+ (−1)�(n+1)

x + n − k

}
= 2k − n, �(n + 1)-even,

we derive from Theorem2 the following curious identities:

Proposition 4 (Two curious identities).

lim
x→∞ x3

n∑
k=0

(−1)k�
(

n

k

)� ��−1(�, −k)

(x + k)(x + n − k)
≡ 0, �-odd, (1.10a)

n∑
k=0

(−1)k�
(

n

k

)�
{

(n − 2k) ��−1(�, −k)

+2(� − 1)��−2(�, −k)

}
≡ 0, �-even. (1.10b)

Even for� = 1, the limiting relation (1.10a) yields a non-trivial result:

0 = lim
x→∞

n∑
k=0

(−1)k
(

n

k

) x3

(x + k)(x + n − k)
, (1.11)

which can be verified by means of finite differences

n∑
k=0

(
n

k

) (−1)k

x + k
= n!

(x)n+1
(1.12)

in view of the Newton–Gregory formula and induction principle.
When� = 2, equality (1.10b) reads explicitly as

( 2n
n

)
=

n∑
k=0

(2k − n)
(

n

k

)2{
Hk − Hn−k

}
. (1.13)

For� = 3, the limiting relation (1.10a) yields another formula:

0 = lim
x→∞ x3

n∑
k=0

(−1)k
(

n

k

)3 3(Hk − Hn−k)
2 + (

H
(2)
k + H

(2)
n−k

)
(x + k)(x + n − k)

. (1.14)

The present author is unable to show it directly.
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When� = 4, equality (1.10b) reads explicitly as

0=
n∑

k=0

(
n

k

)4{
12(Hk − Hn−k)

2 + 3
(
H

(2)
k + H

(2)
n−k

)
(1.15a)

+(n−2k)

[
8(Hk − Hn−k)

3 + (
H

(3)
k − H

(3)
n−k

)
+ 6(Hk − Hn−k) × (

H
(2)
k + H

(2)
n−k

) ]
}

(1.15b)

which is equivalent, under involutionk → n − k, to the identity discovered by Driver et al.
[6, p. 9] and [7, Eq. (21)] with the symbolic summation packageSigma.

1.4. Partial Bell polynomials

According to (1.6a), we display the first few examples as follows:

+ �0(�, x) ≡ 1, (1.16)

− �1(�, x) = �H1, (1.17)

+ �2(�, x) = �2H2
1 + �H2, (1.18)

− �3(�, x) = �3H3
1 + 3�2H2

1H2 + 2�H3, (1.19)

+ �4(�, x) = �4H4
1 + 6�3H2

1H2 + 8�2H1H3 + 3�2H2
2 + 6�H4, (1.20)

− �5(�, x) = �5H5
1 + 10�4H3

1H2 + 20�3H2
1H3 + 15�3H1H2

2 (1.21a)

+30�2H1H4 + 20�2H2H3 + 24�H5. (1.21b)

Under replacement (1.4b), their particular values (1.6b) can be produced as follows:

�0(�, −k) ≡ 1, (1.22)

�1(�, −k) = �
{
Hk − Hn−k

}
, (1.23)

�2(�, −k) = �2
{
Hk − Hn−k

}2 + �
{
H

(2)
k + H

(2)
n−k

}
, (1.24)

�3(�, −k) = �3
{
Hk − Hn−k

}3 + 2�
{
H

(3)
k − H

(3)
n−k

}
(1.25a)

+ 3�2
{
Hk − Hn−k

}
×
{
H

(2)
k + H

(2)
n−k

}
, (1.25b)

�4(�, −k) = �4
{
Hk − Hn−k

}4 + 6�
{
H

(4)
k + H

(4)
n−k

}
(1.26a)

+ 8�2
{
Hk − Hn−k

}
×
{
H

(3)
k − H

(3)
n−k

}
(1.26b)

+ 6�3
{
Hk − Hn−k

}2 ×
{
H

(2)
k + H

(2)
n−k

}
(1.26c)

+ 3�2
{
H

(2)
k + H

(2)
n−k

}2
, (1.26d)

�5(�, −k) = �5
{
Hk − Hn−k

}5 + 24�
{
H

(5)
k − H

(5)
n−k

}
(1.27a)

+ 10�4
{
Hk − Hn−k

}3 ×
{
H

(2)
k + H

(2)
n−k

}
(1.27b)
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+ 20�3
{
Hk − Hn−k

}2 ×
{
H

(3)
k − H

(3)
n−k

}
(1.27c)

+ 15�3
{
Hk − Hn−k

}
×
{
H

(2)
k + H

(2)
n−k

}2
(1.27d)

+ 30�2
{
Hk − Hn−k

}
×
{
H

(4)
k + H

(4)
n−k

}
(1.27e)

+ 20�2
{
H

(2)
k + H

(2)
n−k

}
×
{
H

(3)
k − H

(3)
n−k

}
. (1.27f)

1.5. Further expansion and identity

In view of Theorem2, Corollary 3 and Proposition 4, we can display the fifth partial fraction
expansion

(n!)5
(x)5n+1

=
n∑

k=0

(−1)k
(

n

k

)5{ 1

(x + k)5
+ 5

(x + k)4
(Hk − Hn−k) (1.28a)

+ 5

2(x + k)3

[
5(Hk − Hn−k)

2 + (
H

(2)
k + H

(2)
n−k

)]
(1.28b)

+ 5

6(x + k)2

[
25(Hk − Hn−k)

3 + 2(H (3)
k − H

(3)
n−k)

+15(Hk − Hn−k)
(
H

(2)
k + H

(2)
n−k

) ]
(1.28c)

+ 5

24(x+k)

[
150(Hk−Hn−k)

2(H
(2)
k +H

(2)
n−k)+40(Hk−Hn−k)(H

(3)
k −H

(3)
n−k)

+125(Hk−Hn−k)
4+15(H

(2)
k +H

(2)
n−k)

2+6(H
(4)
k +H

(4)
n−k)

]}
(1.28d)

and the corresponding harmonic number identity

0 =
n∑

k=0

(−1)k
(

n

k

)5{ 150(Hk−Hn−k)
2(H

(2)
k +H

(2)
n−k)+40(Hk−Hn−k)(H

(3)
k −H

(3)
n−k)

+125(Hk−Hn−k)
4+15(H

(2)
k +H

(2)
n−k)

2+6(H
(4)
k +H

(4)
n−k)

}
(1.29)

as well as the limiting relation

0= lim
x→∞

n∑
k=0

(−1)k
(

n

k

)5 x3

(x + k)(x + n − k)
(1.30a)

×
{

150(Hk−Hn−k)
2(H

(2)
k +H

(2)
n−k)+40(Hk−Hn−k)(H

(3)
k −H

(3)
n−k)

+125(Hk−Hn−k)
4+15(H

(2)
k +H

(2)
n−k)

2+6(H
(4)
k +H

(4)
n−k)

}
. (1.30b)

2. Decompositions with numerator monomials

Similar to the proof of Theorem2, we can slightly extend it to the following form.

Theorem 5(Partial fraction decomposition).Let �, � and n be three natural numbers with
0�� < �(n + 1).Then there holds the algebraic identity:

(n!)�x�

(x)�n+1

=
n∑

k=0

(−1)k�
(

n

k

)� �−1∑
�=0

��(�, �, −k)

�! (x + k)�−�
,
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where the�-coefficients are determined by

��(�, �, x) := x�−�
∑

‖m̃‖=�

(−1)�+|m̃| �!
m̃!

�∏
i=1

{
� − �xiHi (x)

}mi

imi
, (2.1a)

��(�, �, −k) = k�−�
∑

‖m̃‖=�

(−1)�+|m̃| �!
m̃!

�∏
i=1

{
�−�ki[H(i)

k +(−1)iH
(i)
n−k]

}mi

imi
. (2.1b)

When� = 0, we remark that this theorem reduces to Theorem2.

Proof of Theorem 5. Following the same process for Theorem 2, we can show that the coeffi-
cients are provided by following derivatives:

��(�, �, −k) := D�
x

{
h�(x)x�}
h�(x)

∣∣∣
x=−k

. (2.2)

Specifying the composite function in Lemma1 with

�(y) = e�y and f (x) = ln
{
x�/�h(x)

}
.

we can write down their derivatives as follows

Dm
y �(y)

�(y)
= �m and D�

x f (x) = (−1)�−1 (� − 1)!
�x�

{
� − �x�H�(x)

}
,

which allow us to determine also the partial Bell polynomials

Bm,�(f ) = (−1)m+�

�mx�

∑
‖m̃‖=�
|m̃|=m

�!
m̃!

�∏
i=1

{
� − �xiHi (x)

}mi

imi
.

Then the corresponding coefficients are given as

D�
x

{
h�(x)x�}
h�(x)

= x�−�
∑

‖m̃‖=�

(−1)�+|m̃| �!
m̃!

�∏
i=1

{
� − �xiHi (x)

}mi

imi
.

The combination of (2.2) and the last expression results directly in (2.1a).
This completes the proof of Theorem 5.�

Applying theLeibniz ruleonderivativesof two-function-product,wecanestablish the following
relation on connection coefficients.

Proposition 6 (Relation between Bell polynomials).

��(�, �, x) :=
�∑

�=0

x�−�
( �

�

)(
�

�

)
�! ��−�(�, x). (2.3)

Multiplying both sides of the partial fraction expansion inTheorem5by x and then lettingx → ∞,
we establish the following identity on harmonic numbers:
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Corollary 7 (Harmonic number identity).Let�, n and� be three natural numbers with1+ � <

�(n + 1).Then there holds the algebraic identity:

n∑
k=0

(−1)k�
(

n

k

)�
��−1(�, �, −k) =

{
0, 0�� < �(n + 1)− 1,

(n!)�, � = �(n + 1)− 1.

The first few coefficients may be displayed as follows:

�0(�, �, x) = x�, (2.4)

�1(�, �, x) = x�−1{� − �xH1
}
, (2.5)

�2(�, �, x) = x�−2
{
(� − �xH1)

2 − (� − �x2H2)
}
, (2.6)

�3(�, �, x) = x�−3
{

(� − �xH1)
3 + 2(� − �x3H3)

−3(�− �xH1)(� − �x2H2)

}
, (2.7)

�4(�, �, x) = x�−4
{

(�−�xH1)
4 +3(�−�x2H2)

2 −6(�−�x4H4)

−6(�−�xH1)
2(�−�x2H2)+8(�−�xH1)(�−�x3H3)

}
, (2.8)

�5(�, �, x) = x�−5

{
(�−�xH1)

5+24(�−�x5H5)+15(�−�xH1)(�−�x2H2)
2

−10(�−�xH1)
3(�−�x2H2) − 30(�−�xH1)(�−�x4H4)

−20(�−�x2H2)(�−�x3H3)+20(�−�xH1)
2(�−�x3H3)

}
. (2.9)

According to Theorem5 and Corollary 7, we can exhibit the following expansion formulae
and the corresponding harmonic number identities.

Example 1(Partial-fraction decomposition:��n).

n! x�

(x)n+1
=

n∑
k=0

(−1)k+�
(

n

k

) k�

x + k
, (2.10a)

n∑
k=0

(−1)k+�
(

n

k

)
k� =

{
0, 0�� < n,

n!, � = n.
(2.10b)

We remark that these two identities can also be verified through finite differences.

Example 2(Partial-fraction decomposition:� < 2+ 2n).

(n!)2x�

(x)2n+1

=
n∑

k=0

(
n

k

)2{ (−k)�

(x + k)2
+ (−k)�−1

x + k

[
� − 2k(Hk − Hn−k)

]}
, (2.11a)

n∑
k=0

k�−1
(

n

k

)2{
� − 2k

(
Hk − Hn−k

)} =
{
0, 0���2n,

(n!)2, � = 1+ 2n.
(2.11b)

Among these results, the last identity has been conjectured byWeideman[14, Eq. (11)] and proved
in [6, Theorem 1].
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Example 3(Partial-fraction decomposition:� < 3+ 3n).

(n!)3x�

(x)3n+1

=
n∑

k=0

(−1)k
(

n

k

)3{ (−k)�

(x + k)3
+ (−k)�−1

(x + k)2

[
� − 3k(Hk − Hn−k)

]
(2.12a)

+ (−k)�−2

2(x + k)

[{
� − 3k(Hk−Hn−k)

}2 − � + 3k2
(
H

(2)
k +H

(2)
n−k

)]
, (2.12b)

n∑
k=0

(−1)k
(

n

k

)3
k�−2

{ [
� − 3k (Hk−Hn−k)

]2
−�+3k2(H

(2)
k +H

(2)
n−k)

}
=
{
0, 0���1+ 3n,

2(n!)3(−1)n, � = 2+ 3n.
(2.12c)

In particular, the cases� = 0 and 1 of the last identity have been conjectured by Weideman[14,
Eq. (20)] and then verified in [6, Eqs. (16) and (17)]. An alternative approach for (2.12c) can be
found in [6, p. 15].

Example 4(Partial-fraction decomposition:� < 4+ 4n).

(n!)4x�

(x)4n+1

=
n∑

k=0

(
n

k

)4{ (−k)�

(x + k)4
+ (−k)�−1

(x + k)3

[
� − 4k(Hk − Hn−k)

]
(2.13a)

+ (−k)�−2

2(x + k)2

[{
�−4k(Hk−Hn−k)

}2−{�−4k2(H(2)
k +H

(2)
n−k)
}]

(2.13b)

+ (−k)�−3

6(x + k)

[ {
�−4k(Hk−Hn−k)

}3+2
{
�−4k3(H(3)

k −H
(3)
n−k)
}

−3
{
�−4k(Hk−Hn−k)

}{
�−4k2(H(2)

k +H
(2)
n−k)
} ]}. (2.13c)

The corresponding harmonic identity reads as
n∑

k=0

k�−3
(

n

k

)4[ {�−4k(Hk−Hn−k)
}3+2

{
�−4k3(H(3)

k −H
(3)
n−k)
}

−3
{
�−4k(Hk−Hn−k)

}{
�−4k2(H(2)

k +H
(2)
n−k)
} ] (2.14a)

=
{
0, 0���2+ 4n,

6(n!)4, � = 3+ 4n.
(2.14b)

For� = 0, 1,2, the corresponding results to this identity have been conjectured byWeideman[14,
Eq. (21)] and subsequently confirmed byDriver et al. [6, Eq. (20)]. In particular, we recover again,
with the case� = 1, identity (1.15a)–(1.15b) found originally by Driver et al. [7, Eq. (21)].

Example 5(Partial-fraction decomposition:� < 5+ 5n).

(n!)5x�

(x)5n+1

=
n∑

k=0

(−1)k
(

n

k

)5



(−k)�

(x + k)5
+ (−k)�−1

(x + k)4

{
� − 5k(Hk − Hn−k)

}

+ (−k)�−2

2(x + k)3

[{
�−5k(Hk−Hn−k)

}2−{�−5k2(H
(2)
k +H

(2)
n−k)
}]

+ (−k)�−3

6(x + k)2

[ {
�−5k(Hk−Hn−k)

}3+2
{
�−5k3(H

(3)
k −H

(3)
n−k)
}

−3
{
�−5k(Hk−Hn−k)

}{
�−5k2(H

(2)
k +H

(2)
n−k)
} ]
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+ (−k)�−4

24(x + k)




{
�−5k(Hk−Hn−k)

}4−6
{
�−5k4(H

(4)
k +H

(4)
n−k)
}

−6
{
�−5k(Hk−Hn−k)

}2{
�−5k2(H

(2)
k +H

(2)
n−k)
}

+8
{
�−5k(Hk−Hn−k)

}
×
{
�−5k3(H

(3)
k −H

(3)
n−k)
}

+3
{
�−5k2(H

(2)
k +H

(2)
n−k)
}2







.

The corresponding harmonic identity reads as

n∑
k=0

(−1)k
(

n

k

)5
k�−4




{
�−5k(Hk−Hn−k)

}4−6
{
�−5k4(H

(4)
k +H

(4)
n−k)
}

−6
{
�−5k(Hk−Hn−k)

}2{
�−5k2(H

(2)
k +H

(2)
n−k)
}

+8
{
�−5k(Hk−Hn−k)

}
×
{
�−5k3(H

(3)
k −H

(3)
n−k)
}

+3
{
�−5k2(H

(2)
k +H

(2)
n−k)
}2




(2.15a)

=
{
0, 0���3+ 5n,

24(n!)5(−1)n, � = 4+ 5n.
(2.15b)

The cases corresponding to� = 0, 1,2, 3 have been conjectured by Weideman[14, Eq. (22)]
and claimed subsequently to be verified by Driver et al. [6, p. 11] and Weideman [15] through
computer algebra packageSigma.

3. Hermite–Padé approximations to the logarithm based atx = 1

For given positive integersm and n, the problem consists of findingm + 1 polynomials
{mP�(x)}m�=0 of degree at mostn such that

m∑
�=0

mP�(x)
(
ln x

)m−� = O
{
(x − 1)m+n+mn

}
. (3.1)

Weideman[14] has derived the explicit formula for the quadratic approximation and characterized
the cubic and quartic cases, which have been resolved subsequently in [6,7], where recurrence
relations for computations have been investigated through computer algebra packageSigmaas
proposed first by Borwein [2]. Based on the Bell polynomials��(�, x) introduced in this paper,
we will explicitly construct the generalized Hermite–Padé approximants to the logarithm and
therefore resolve this open problem completely.

Theorem 8(Padé approximations to the logarithm).For 0���m, define the Padé approx-
imants by

mP�(x) = (−1)�
(

m

�

) n∑
k=0

(−1)k(m+1)
(

n

k

)m+1
xk ��(m + 1,−k). (3.2)

Then the corresponding residual function satisfies:

Rm
n (x) :=

m∑
�=0

mP�(x)
{
ln x

}m−� = O
{
(x − 1)m+n+mn

}
. (3.3)

Proof. It is obvious thatmP0(x) satisfies the normalization conditionmP0(0) = 1.



54 W. Chu / Journal of Approximation Theory 137 (2005) 42–56

Let �x stand for the differential operator�x = xDx . In order to show that

D�
xR

m
n (x)

∣∣∣
x=1

= 0 for 0�� < m + n + mn

it suffices to check that

��
xR

m
n (x)

∣∣∣
x=1

= 0 for 0�� < m + n + mn

thanks to the Stirling inversion formulae[4, p. 220]:

xnDn
x =

n∑
k=1

s(n, k) (xDx)
k, (3.4a)

(xDx)
n =

n∑
k=1

S(n, k) xkDk. (3.4b)

Substituting{mP�(x)} intoRm
n (x), we can reformulate the residual function as

Rm
n (x) =

m∑
�=0

(−1)�
(

m

�

){
ln x

}m−�
n∑

k=0

(−1)k(m+1)
(

n

k

)m+1
xk ��(m+1,−k) (3.5a)

=
n∑

k=0

(−1)k+m+km
(

n

k

)m+1
xk

m∑
�=0

(−1)�
(

m

�

)
�m−�(m+1,−k)

{
ln x

}�
. (3.5b)

By means of the Leibniz rule, it is not hard to verify

�™xx
k
∣∣∣
x=1

= k™ and �Ex
{
ln x

}�∣∣∣
x=1

=
{

�!, E = �,

0, E �= �.

They allow us to compute the following derivatives of higher order

��
xx

k
{
ln x

}�∣∣∣
x=1

= �!
( �

�

)
k�−� (3.6)

which leads us to the following:

��
xR

m
n (x)

∣∣∣
x=1

= (−1)m
n∑

k=0

(−1)k(m+1)
(

n

k

)m+1

×
m∑

�=0

(−1)�
(

m

�

)
�m−�(m + 1,−k) ��

x xk
{
ln x

}�∣∣∣
x=1

= (−1)m+�
n∑

k=0

(−1)k(m+1)
(

n

k

)m+1

×
�∑

�=0

(−k)�−�
( �

�

)(
m

�

)
�! �m−�(m + 1,−k).
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In view of relation (2.3), the last expression can be restated as

��
xR

m
n (x)

∣∣∣
x=1

= (−1)m+�
n∑

k=0

(−1)k(m+1)
(

n

k

)m+1
�m(m + 1,�, −k) (3.7)

which vanishes for 0�� < m + n + mn thanks to Corollary7. �

According to (1.6a) and the Leibniz rule, we can rewrite the sum with respect to� displayed in
(3.5b) as

m∑
�=0

(−1)�
(

m

�

)
�m−�(m+1,−k)

{
ln x

}� = Dm
z

{
x−zhm+1(z)

}
xkhm+1(z)

∣∣∣
z=−k

.

For a positive real numberε with 0 < ε < 1, we can further express the numerator in terms of
the Cauchy integral as

Dm
z

{
x−zhm+1(z)

}∣∣∣
z=−k

= m!
2�i

∮
|z+k|=ε

hm+1(z)

(z + k)m+1

dz

xz

= m!
2�i

∮
|z+k|=ε

(n!)m+1

(z)m+1
n+1

dz

xz
.

Substituting them into (3.5b) and then applying the residue theorem, we derive the following
integral representation for the residual function (3.3).

Corollary 9. The residual function of the Padé approximation to the logarithm is equal to the
contour integral

Rm
n (x) = (−1)m(n!)m+1 m!

2�i

∮
C

dz

xz(z)m+1
n+1

, (3.8)

where C is a rectifiable contour which encloses the real interval[0, n].

By combining the integral representation (3.8) and the following Taylor polynomial of order
M = m + n + mn for 1/xz atx = 1:

1

xz
=

M−1∑
k=0

(−z

k

)
(x − 1)k + M

(−z

M

) ∫ x

1

(x − t)M−1

tz+M
dt (3.9)

one can obtain an alternative demonstration of (3.3). The details will not be reproduced here.

Remark. The generalized Hermite–Padé approximantsmP�(x)may admit different expressions.
For example, Driver et al. (DPSW) have figured out, at the end of their joint paper [6], a double
sumexpression concerning transcendental number�andhigher derivatives of binomial coefficient(

n
k

)m+1 with respect tok. Formally it is much more complicated than (3.2) for the presence of
transcendental number�. However, if we ignore all the terms involving�, then it is not difficult
to check that the expression conjectured by DPSW coincides with (3.2). Should their conjecture
be true, it would be interesting to verify that the collection of all the terms involving� appeared
in their double sum expression results in zero.
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